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We derive percolation results in the continuum plane that lead to what appears
to be a general tendency of many stochastic network models. Namely, when
the selection mechanism according to which nodes are connected to each other,
is sufficiently spread out, then a lower density of nodes, or on average fewer
connections per node, are sufficient to obtain an unbounded connected com-
ponent. We look at two different transformations that spread-out connections
and decrease the critical percolation density while preserving the average node
degree. Our results indicate that real networks can exploit the presence of
spread-out and unreliable connections to achieve connectivity more easily, pro-
vided they can maintain the average number of functioning connections per
node.
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1. INTRODUCTION

Stochastic network models have received much attention in the past few
years for their ability to describe physical, chemical, biological, engineer-
ing and social structures. One of the early models originally appeared
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in the 1961 paper of Gilbert’s(6), motivated by multi-hop communication
of wireless broadcasting stations and established the foundations of the
theory of Continuum Percolation. In Gilbert’s formulation, points of a
two-dimensional Poisson point process represent wireless transmitting sta-
tions of range 2r and he asks if the system can provide some long-dis-
tance communication. He shows the existence of a critical value λc for
the density of the transmitters, such that, for λ>λc, an unbounded con-
nected component of transmitters forms (i.e., the network percolates) with
probability one, and so long-distance multi-hop communication is possi-
ble. The monograph by Meester and Roy(9) describes many mathemati-
cal extensions of Gilbert’s model that later appeared in the literature. In
physics, continuum percolation is applied to the study of clustering behav-
ior of particles in continuum systems and is relevant in phenomena like
conduction in dispersions, flow in porous media, elastic behavior of com-
posites, sol–gel transition in polymers, aggregation in colloids, and the
structure of liquid water, to name a few, see for example the works(13–15)

and references therein. In engineering, interest relies in the connection of
continuum percolation to the recent developments of radio packet, ad hoc
networks.(1,3,4,12)

In this paper, we study a generalization of Gilbert’s model in which
each pair of Poisson points can be connected with a probability that
depends on their relative position. More precisely, points at x and y are
connected with probability g(x − y), where g is the so-called connection
function; for details see below. We investigate at how the critical density
value λc varies with the shape of the connection function. We find what
appears to be a general tendency in these kind of random connection
models, namely, when the selection mechanism with which nodes are con-
nected to each other is sufficiently spread out, then a lower density of
nodes, or equivalently fewer connections per node, will suffice to obtain
an unbounded connected component. We show this by considering two
different transformations that spread out the connection function, decreas-
ing its critical density value λc, while preserving the average node degree.
Our results indicate that real networks can exploit the presence of spread
out, unreliable connections, to achieve connectivity more easily, provided
they can maintain on average few functioning connections per node.

There are a number of related results in the literature that support
this general tendency of obtaining connectivity by using fewer, spread-out
connections. Penrose(11) has shown that as a connection function of area
1 gets more spread out, and the probability of connection between each
pair of nodes tends to zero, its critical density for percolation converges
to one, and so does the average number of connections per node. This can
be seen as the limiting case of our Theorem 2.1, while our Theorem 2.2
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shows convergence to one for a different kind of spreading the connection
function. Meester et al.(10) proved a similar limiting result as the dimen-
sion of the space spreads out to infinity. Dubhashi et al.(5) proved that for
a certain class of random geometric graphs a giant component forms by
selecting only few, among a large number of potentially far away neigh-
bors. On the contrary, when connections do not spread out, and nodes
connect only to nearest neighbors, then few links are not enough to obtain
an unbounded component, see Häggström and Meester(7), while no finite
number of nearest neighbors connections suffices for connectedness, see
Gonzales-Barrios and Quiroz(16). Finally, we point out that, independently
and simultaneously, Balister et al.(2), proved a similar result as our Theo-
rem 2.2, using a somewhat different approach.

2. THE RANDOM CONNECTION MODEL

We consider a random connection model where each pair of points
(xi, xj ) of a Poisson point process of density λ is connected with probabil-
ity g(xi − xj ), for some given function g : R2 → [0,1]. All connections are
independent of each other. We may, for example, pick a function g such
that the probability of existence of a link between two points decreases as
the they get further away. For generality, however, we prefer to let g be an
arbitrary function. In order to avoid a trivial model, we assume that the
effective area e(g)=∫

x∈R2 g(x)dx satisfies 0<e(g)<∞. We call H the class
of functions that satisfy this requirement. The two cases e(g) = 0 and ∞
are not interesting because, since λe(g) is the expected number of connec-
tions per node (ENC), nodes have on average respectively 0 or infinitely
many neighbors in those cases.

We make the additional assumption that g(x) only depends on the
Euclidian norm |x|, which means that we can view g as a function from
R → [0,1]; this is convenient when visualizing g with a graph. From now
on we will adapt this point of view.

It is well known(9) that for any function g∈H there is a critical value
λc(g) that ensures connectivity almost surely (a.s.), i.e., with probability
one. This is defined as

0<λc(g)= inf{λ :∃ infinite connected component a.s.}<∞.

When λ > λc we say that the random connection model percolates.
Note that the considered model generalizes standard continuum percola-
tion, where Poisson points are connected with probability one, if discs of
radius r centered at each point overlap, as this can be seen as a random
connection model with a connection function
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g(x)=
{

1 if |x|�2r,
0 if |x|>2r.

(1)

We are interested in how the percolation properties of the model
change when we change the shape of the connection function, while pre-
serving its effective area. We start by considering the following transfor-
mation.

2.1. Squishing and Squashing Transformation

Given a function g ∈ H and 0 < p < 1, define g
squash
p by g

squash
p (x) =

p · g(
√

px). This function, as illustrated in Fig. 1, is a version of g in
which probabilities are reduced by a factor of p but the function is spa-
tially stretched so as to maintain the original effective area. Therefore, the
ENC of each point remains the same, but these connections have a “wider
range” of lengths. Note that an affine transformation of the plane, for
example converting discs into aligned ellipses of the same area, would also
introduce a wider range of connection lengths, but would not affect the
connectivity threshold.

Theorem 2.1. For all g ∈H and 0<p <1 we have,

λc(g)�λc(g
squash
p ).

Proof of Theorem 2.1. We are to compare the critical densities
associated with the connection functions g and g

squash
p . We do this by

relating both connection functions to a third connection function of larger
effective area, namely hp(x)=g(

√
px).

Fig. 1. Squishing and squashing. The function g is squished and squashed to give the
function g

squash
p .
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Consider a realization G of a random connection model with den-
sity λ and connection function hp. On G, we can perform independent
bond percolation with the same parameter p, by removing any connection
(independent of its length) with probability 1 − p, independently of all
other connections. The resulting random graph can now effectively be
viewed as a realization of a random connection model with density λ

and connection function php(x)=g
squash
p . On the other hand, we can also

perform independent site percolation on G with connection function hp,
by removing any vertex of G (together with the connections emanating
from it) with probability 1 − p, independently of all other vertices. This
results in a realization of a random connection model with density pλ

and connection function hp, which can be seen (by scaling) as a realiza-
tion of a random connection model with density λ and connection func-
tion g.

On any graph G it is well known(8) that the site percolation criti-
cal value psite

c (G) and the bond percolation critical value pbond
c (G) are

related as

psite
c (G)�pbond

c (G).

In words, this means that if site percolation with parameter p occurs,
then also bond percolation with the same parameter occurs. In the above
construction, we apply this to G. If site percolation occurs on G, or equiv-
alently, if a random connection model with density λ and connection func-
tion g percolates, then also bond percolation occurs, or equivalently, a
random connection model with density λ and connection function g

squash
p

percolates. This proves the theorem.
We point out that the theorem above has a certain depth. Essentially,

it states that unreliable links are at least as good at providing connectivity
as reliable links, if the ENC per node is the same in each case. Another
way of looking at this is that the longer links introduced by stretching
the connection function are making up for the increased unreliability of
the connections. Note also that the considered transformation spreads out
connections, but the resulting graph still presents a mixture of short and
long links at all scale lengths. Hence, it remains to be established, whether
longer connections alone are enough to help the percolation process, or
do we need the mixture of all scale lengths provided by the squishing and
squashing transformation. It turns out that long bonds are more useful
for percolation than short ones at a given density of points. We show this
by introducing another transformation that maintains on average the same
number of bonds per node, but makes them all longer.
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2.2. Shifting and Squeezing Transformation

We call this transformation gshift
s (x). Here we “shift” the function g

outwards (so that a disc becomes an annulus, for example) by a distance s,
but squeeze the function after that, so that it has the same effective area.
Hence, for any x � s, gshift

s (x)=g[c−1(x − s)], where the constant c is cho-
sen so that the effective area is preserved by the transformation. See Fig. 2
for an illustrating example.

From numerical simulations it appears as the effect of the shift-
ing and squeezing transformation is similar to that of the squishing and
squashing one. This would suggest that a monotonicity result along the
same lines of Theorem 2.1 should hold in this case. However, we will only
prove a weaker, limiting result. First, let us look the simulation results that
are presented in Fig. 3. Each shape shown has effective area 1 and is posi-
tioned so that the height of the center of the shape is at the critical ENC
value needed for percolation of that shape. For example, the solid disc
at the top is at a height of around 4.51, indicating that disc percolation
occurs whenever each disc has over 4.51 neighbors on average, in agree-
ment with numerical results such as in ref. 13. The bottom of the graph

Fig. 2. Shifting and squeezing. The function g is shifted and squeezed to give the
function gshift

s .

Fig. 3. Percolation thresholds of various shapes. The numbers on the left represent the
ENC values needed for percolation of the different shapes obtained by computer simulations.
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is at ENC of 1, which is the theoretical minimum, attained by very large,
diffuse shapes.(11) The ascending shapes on the left represent the squish-
ing and squashing transformation applied to a connection function of the
type described by Eq. (1). These are discs with probabilistic connections
to other points touching the disc, with probability varying linearly from
0.1 for the large light gray circle to 1.0 for the non-probabilistic disc at
the top. Then the descending shapes represent the shifting and squeezing
transformation that transforms discs into annuli whose inner radius varies
linearly from 0.0 of the outer radius for the solid disc at the top (the same
disc as the last one in the sequence of ascending shapes) to 0.9 for the thin
ring at the bottom. The error bars for each shape’s height are less than the
distance between adjacent ticks shown on the vertical axis, except for the
bottommost shapes, where the finiteness of the simulation size more eas-
ily interferes with the long range connectivities that are common in com-
ponents formed by those shapes. Finally, simulation results for some more
irregular geometric shapes of the same area are grouped on the right-hand
side of the figure.

We now turn to our analytic results for the shifting and squeezing
transformation. We show that it is possible to decrease the percolation
threshold of the random connection model by taking a sufficiently large
shift. We also show that in the limit of very spread-out connections, there
is no difference between diffuse discs and thin annuli, i.e., between squish-
ing and squashing, and shifting and squeezing, as they both converge to
one (see also related results (2,11)).

Results hold for any g∈H , but to ease the presentation we focus only
on annuli shapes. The general case is obtained following the same proof
steps. Finally, we want to spend few words on our proof technique. We
proceed comparing our limiting percolation process to a branching pro-
cess where the population may increase infinitely as soon as the expected
offspring is larger than one. As connections are more spread out, the two
processes become tightly coupled and, in conjunction with a renormaliza-
tion argument, this explains why percolation is achieved as the expected
node degree exceeds one. Comparison with branching processes is quite
standard in percolation theory,(9) and the reader can also refer to ref. 7
for a similar application of this technique. Still, there are some technical
difficulties that we must overcome in the proof. Another possible compar-
ison is with ordinary random graphs, that exhibit a giant component as
the average node degree exceeds one. This approach is more combinatorial
in flavor and has been exploited in ref. 2. The two methods really are very
different. Roughly speaking, the method in ref. 2 gives more precise results
about the rate of convergence for this particular case, while our method is
easier to generalize to other connection functions.
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We formally proceed as follows. Denote by Ar the annulus with inner
radius r and with area 1, so that A0 is just the disc of unit area. Now
consider, for each point x of the Poisson process, the set Ar(x) := x +Ar ,
that is, the annulus with inner radius r centered at x. We draw undirected
edges between x and all points in Ar(x). This gives a random graph, and
we are interested in the critical value of this process in terms of percola-
tion, and we denote this critical value by λc(r).

Theorem 2.2. limr→∞ λc(r)=1.

Before proving above this theorem, we remark that λc(r) > 1, for all
r � 0 (strict inequality). This can be easily seen by fixing r � 0 and com-
paring the percolation process to a Galton–Watson branching process with
a Poisson-λ offspring distribution as follows. The 0th generation point is
placed at the origin. Its children are distributed uniformly and indepen-
dently over an annulus of area 1, centered at the origin. Subsequent chil-
dren of any point x are also distributed uniformly and independently over
an annulus of area 1 centered at x, but if such a child happens to fall
into one of the annuli that has been considered before, it is discarded.
Note that the overlap between the annulus centered at x and the pre-
viously considered annuli is uniformly bounded below by some number
c(r)>0, namely the intersection with the annulus of the parent of x. This
means that the offspring of any point (apart from the origin) is stochasti-
cally dominated by a Poisson random variable with parameter λ(1−c(r)).
Hence, there is a λ0 >1 so that λ0(1−c(r))<1 and for this λ0, the perco-
lation process is dominated by a subcritical branching process, and hence
dies out. This means that infinite components cannot exist for λ0, which
shows that λc(r) is strictly larger than 1.

Proof of Theorem 2.2. The proof of this theorem proceeds via a
suitable renormalization and comparison with a discrete directed perco-
lation process and a supercritical branching process. We first describe a
supercritical spatial branching process which is, in some sense to be made
precise below, the limiting object of our percolation process as r →∞.

A spatial branching process. Consider an ordinary Galton–Watson
branching process with Poisson-λ offspring distribution, where λ>1. This
process is supercritical, and hence there is a positive probability that the
process does not die out. We add a geometric element to this process as
follows: The 0th generation point is placed at the origin, say. The children
of any point x of the process are distributed uniformly and independently
over the circumference of a circle with radius 1, centered at x.

A sequential construction of the percolation process. We now describe
a way to construct a percolation cluster in our percolation process, which
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looks very much like the branching process just described. We will then
couple the two processes. One of the aspects of this construction is that
we create the point process along the way, so at the beginning of the con-
struction, we think of the plane as being completely empty. The density of
the underlying Poisson process is the same λ>1 as above.

We start with a point in the origin, and consider the annulus Ar =
Ar(0). We now “fill” Ar with a Poisson process, that is, we take a Pois-
son-λ random number of points, and distribute these uniformly (and inde-
pendent of each other) over Ar . These points are directly connected to the
origin. If there are no points in Ar we stop the process; if there are points
in Ar we denote these by y1, y2, . . . , ys , ordered by modulus, say. In order
to decide about the connections from y1, we consider Ar(y1) and “fill” this
annulus with an independent Poisson process, in the same way as before.
The (random) points that we obtain in Ar(y1) are directly connected to
y1 but not to 0. Now note that we make a mistake by doing this, in the
sense that the region Ar(0)∩Ar(y1) is not empty, and this region has now
been filled twice, and therefore the intensity of the Poisson process in the
intersection is 2λ instead of the desired λ. For the moment we ignore this
problem; we come back to this in a few moments. We now continue in the
obvious way, each time “filling” the next annulus with a Poisson process,
and each time possibly making a mistake as just observed.

Comparison between branching process and percolation process. Ignor-
ing the mistakes we make, the sequential construction described above is
similar to the spatial branching process. We can actually couple the two
processes (still ignoring mistakes) by insisting that the offspring of the
branching process also be the points of the percolation process. If a point
in the branching process is placed at a certain position (at distance 1) from
its parent, then the point in the percolation process is located at the same
relative angle, and uniformly distributed over the width of the annulus.
Since λ> 1, the percolation process would continue for ever with positive
probability, thereby creating an infinite percolation component.

However, we have to deal with the mistakes we make along the way.
We have two tools at our disposal that can be helpful now. First, it should
be noted that the overlap between the various annuli gets smaller as r →
∞. Secondly, we will only use the coupling between the spatial branch-
ing process and the percolation process for a uniformly bounded num-
ber of annuli, to build a renormalised process that dominates supercritical
directed site percolation on a square lattice.

Renormalization blocks. We now describe the renormalization and the
coupling that works for a uniformly bounded number of annuli. We first
look at a construction for the spatial branching process, and then show
that the same construction is achieved in the percolation process, with
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arbitrarily large probability. We refer to Fig. 4. Divide the positive quad-
rant into boxes of size L×L, where we choose L in a moment. The box
with lower leftmost point (iL, jL) is denoted by BL(i, j). Let ε and δ be
given positive numbers, and let λ be as before.

We consider N spatial branching processes that evolve in parallel,
starting from box BL(0,0), and place a total ordering on the progeny we
observe such that xab <ycd if (a <c), or (a = c and b<d), where a, c rep-
resent the generation numbers of children x and y respectively, and b, d

represent their Euclidian distances from an arbitrarily chosen origin. We
now choose various quantities as follows.

Fig. 4. Renormalization blocks and coupling with discrete site percolation. We divide the
positive quadrant into boxes of size L × L. A directed site percolation model is constructed
selecting boxes that are at (k −1)L distance apart.
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1. First choose N so large that the probability that at least one out of
a collection of N independent spatial branching processes survives for
ever, is at least 1− ε.

2. Then choose L so large that the probability that the box BL(0,0) con-
tains a collection of N points of the Poisson process of intensity λ such
that no two points of the collection are within distance δ of each other,
is at least 1−ε. We call such a collection of N points a good collection.

3. Then choose k and M so large that in the spatial branching process
(which, we recall, uses circles of radius 1) the following is the case: if
we start with any good collection of points in BL(0,0), and we dis-
card all further offspring of any point which falls in either BL(k,0)

or BL(0, k), then the probability that the total progeny of this collec-
tion, restricted to the first M points, contains a good collection in both
BL(k,0) and BL(0, k), is at least 1 − 4ε. The possibility of this choice
requires a little reflection. We want to ensure that the N branching pro-
cesses, after generating at most M points, will create a good collection
of points in the two “target” boxes BL(k,0) and BL(0, k), even if we
discard all offspring departing from points inside the two target boxes.
Among the initial N branching processes starting in BL(0,0), there is
at least one that survives for ever with high probability. By taking the
distance factor k large enough we can also ensure with high probabil-
ity that this surviving process generates an arbitrarily large collection of
points before ever reaching any of the two target boxes. Each of these
intermediate points has positive probability of having an infinite line of
descendants. Since a single line of descent of any point follows a sim-
ple two-dimensional random walk with zero drift, this random walk is
recurrent, and it will end up in either BL(0, k) or BL(k,0). The proba-
bility that this happens for at least N lines of descent in each of the two
target boxes and that the collection of “terminal” points in each of the
two target boxes contain a good set, can be made arbitrarily high pro-
vided that the number of intermediate starting points is high enough.
Finally, the probability that this happens in a uniformly bounded num-
ber of generated points can be as high as we like by taking the allowed
total number M of points large enough.

4. Finally, we choose a δ′ small enough so that the probability that the
distance between any two of the first M points generated by the initial
N branching processes is smaller than δ′, is at most ε.

Note that the construction described up to now has been in terms
of the spatial branching process and it ensures that a good collection
of points in BL(0,0) can create good collections in both BL(0, k) and
BL(k,0), in a bounded number of iterations, with probability at least
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1−4ε. We now want to show that it is also possible to obtain the same,
with high probability, in the sequential percolation process. To do this we
will need to take the radius r of the annuli in the percolation process large
enough. First of all, we note that if we fix an upper bound M of annu-
li involved, and ε > 0, we can choose r so large that the probability that
in the union of N sequential percolation processes, any point falls into an
intersection of two among the first M annuli, is at most ε. This is because
we start the N processes with annuli separated by at least δ, and evolve
generating a total number of at most M annuli that are at distance at least
δ′ to each other. Hence, the total overlap between the annuli can be made
as small as we want by taking r large.

The percolation process and the branching process now look alike in
the first M steps, in the sense that if the branching process survives while
generating M points, the percolation process also survives with high prob-
ability. To complete the construction we need something slightly stronger
than this. We also need to make sure that if a point in the branching pro-
cess ends up in a certain box BL(i, j), then the corresponding point in
the percolation process ends up in the corresponding box BrL(i, j) (the
box with side length rL whose lower left corner is at (irL, jrL)), and vice
versa. Note that since the annuli have a certain width, two offspring of the
same parent will not be at the exact same distance from the parent. There-
fore, points can possibly end up in the wrong box. However, the prob-
ability that there is a point which ends up in the wrong box can again
be made less than ε by taking r large. To explain why this is, note that
the spatial branching process has distance 1 between a parent and child,
and the choice of N , L, M and δ′ are in terms of this process. When we
couple the branching process with the percolation process and we take r

large, we also have to scale the whole picture by a factor r. When we do
this, the width of each annulus becomes smaller and tends to 0. Therefore,
the probability of making a mistake by placing a point in the wrong box
decreases to 0 as well.

Dynamic coupling with discrete percolation. We are now ready to show
that the renormalization described above dominates a supercritical directed
site percolation process on a square lattice. Let us order the vertices cor-
responding to boxes in the positive quadrant in such a way that the
modulus is non-decreasing. We look at vertices (i, j). We call the vertex
(0,0) open if the following two things happen in the percolation sequen-
tial construction:

1. The box BrL(0,0) contains a good collection of points; we choose one
such collection according to some previously determined rule.
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2. The progeny of this chosen good collection, restricted to the first M

annuli of the process (and where we discard further offspring of points
in any of the two target boxes BrL(0, k) and BrL(k,0)) contains a good
collection in both BrL(0, k) and BrL(k,0).

We now consider the vertices (i, j) associated with boxes of the first
quadrant separated by distance kL one by one, in the given order. The
probability that (0,0) is open can be made as close to one as desired,
by appropriate choice of the parameters. In particular, we can make this
probability larger than pc, where pc is the critical value of directed two-
dimensional independent site percolation on the square lattice.

If the origin is not open, we terminate the process. If it is open,
we consider the next vertex, (0, k) say. The corresponding box BrL(0, k)

contains a good collection, and we can choose any such good collection
according to some previously determined rule. We start all over again
with this good collection of points, and see whether or not we can reach
BrL(k, k) and BrL(0,2k) in the same way as before. If this is the case, we
declare (0, k) open, otherwise we call it closed. Note that there is one last
problem now, since we have to deal with overlap with annuli from previ-
ous steps of the algorithm, that is, with annuli involved in the step from
(0,0) to (0, k). This is easy though: since we have bounded the number
of annuli involved in each step of the procedure, there is a uniform upper
bound on the number of annuli that have any effect on any given step of
the algorithm. Therefore, the probability of a mistake due to any of the
previous annuli can be made arbitrarily small by taking r even larger, if
necessary. This shows that we can make the probability of success each
time larger than pc, no matter what the history of the process is. This
implies that the current renormalized percolation process dominates inde-
pendent site percolation with parameter p>pc, and is therefore supercrit-
ical. Finally, it is easy to see that if the renormalized process percolates,
so does the underlying percolation process, proving the result.

It is not hard to see that this proof can be generalized to any gshift
s .

In the general case, the offspring of a particle is distributed according to
an inhomogeneous Poisson process, depending on the connection function.
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